Robust Adaptive LCMV Beamformer Based on an Iterative Suboptimal Solution

نویسندگان

  • XIANSHENG GUO
  • LEI CHU
  • BAOCANG LI
  • Xiansheng GUO
  • Lei CHU
  • Baocang LI
چکیده

The main drawback of closed-form solution of linearly constrained minimum variance (CF-LCMV) beamformer is the dilemma of acquiring long observation time for stable covariance matrix estimates and short observation time to track dynamic behavior of targets, leading to poor performance including low signal-noise-ratio (SNR), low jammer-to-noise ratios (JNRs) and small number of snapshots. Additionally, CF-LCMV suffers from heavy computational burden which mainly comes from two matrix inverse operations for computing the optimal weight vector. In this paper, we derive a low-complexity Robust Adaptive LCMV beamformer based on an Iterative Suboptimal solution (RAIS-LCMV) using conjugate gradient (CG) optimization method. The steepest descent weight updated strategy is adopted to obtain a simple iteration process. The merit of our proposed method is threefold. Firstly, RAISLCMV beamformer can reduce the complexity of CF-LCMV remarkably. Secondly, RAIS-LCMV beamformer can adjust output adaptively based on measurement and its convergence speed is comparable. Finally, RAIS-LCMV algorithm has robust performance against low SNR, JNRs, and small number of snapshots. Simulation results demonstrate the superiority of our proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Reduced-Rank Adaptive LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Parameters

This chapter presents reduced-rank linearly constrained minimum variance (LCMV) algorithms based on the concept of joint iterative optimization of parameters. The proposed reduced-rank scheme is based on a constrained robust joint iterative optimization (RJIO) of parameters according to the minimum variance criterion. The robust optimization procedure adjusts the parameters of a rank-reduction ...

متن کامل

Research on employment of adaptive beamformer based on weight iterative algorithm in suppressing radio frequency interferences

By comparing the disadvantages and advantages of conventional algorithms of adaptive beamformer, we put forward an adaptive beamformer based on weight iterative algorithm for suppressing radio frequency interference (RFI), according to the distributing properties of RFI in different range cell. We get the initial weight vector of the adaptive beamformer by utilizing the algorithm of minimum var...

متن کامل

Robust Low-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimization Strategies

This chapter presents reduced-rank linearly constrained minimum variance (LCMV) algorithms based on the concept of joint iterative optimization of parameters. The proposed reduced-rank scheme is based on a constrained robust joint iterative optimization (RJIO) of parameters according to the minimum variance criterion. The robust optimization procedure adjusts the parameters of a rank-reduction ...

متن کامل

Iterative robust adaptive beamforming

The minimum power distortionless response beamformer has a good interference rejection capability, but the desired signal will be suppressed if signal steering vector or data covariance matrix is not precise. The worst-case performance optimization-based robust adaptive beamformer (WCB) has been developed to solve this problem. However, the solution of WCB cannot be expressed in a closed form, ...

متن کامل

Low-Complexity Adaptive Set-Membership Reduced-rank LCMV Beamforming

This paper proposes a new adaptive algorithm for the implementation of the linearly constrained minimum variance (LCMV) beamformer. The proposed algorithm utilizes the setmembership filtering (SMF) framework and the reduced-rank joint iterative optimization (JIO) scheme. We develop a stochastic gradient (SG) based algorithm for the beamformer design. An effective time-varying bound is employed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015